Tuesday, November 8, 2011

Multifunction Phased Array Radar for Air Traffic and Weather Surveillance

Aerospace & Electronic Systems; Antenna & Propagation; and Microwave Theory & Techniques Societies

6:00 PM, Tuesday, 8 November

Multifunction Phased Array Radar for Air Traffic and Weather Surveillance

Jeffrey S. Herd, MIT Lincoln Laboratory, Lexington, MA

A multifunction phased array radar (MPAR) system has been proposed as the next-generation solution to provide both weather and primary aircraft surveillance—a functionality that no current radar can satisfy. Instead of using a rotating antenna, as current civilian radar systems do, an MPAR has no moving parts and electronically shapes and steers its radar beam. This unique beam agility permits increased vertical resolution and faster full-volume scan rates, thus enabling one radar unit to perform multiple weather and atmospheric surveillance tasks. One clear advantage of the MPAR system is a potential reduction in the total number of ground-based radars. In addition, MPAR surveillance capabilities will exceed those of current operational radars, for example, by providing more frequent weather volume scans and by providing vertical resolution and height estimates for primary aircraft targets.
Under FAA sponsorship, MIT Lincoln Laboratory and M/A-COM Technology Solutions have developed an active electronically scanning phased array antenna panel, which demonstrates the fundamental building block of an MPAR system. The phased array panels function together coherently to radiate and receive pulses of radar energy that can be used to detect, locate, and track both aircraft and weather targets. A preliminary assessment indicated that full system implementation could result in the deployment of approximately 350 radars. To effectively compete with current mechanically scanned solutions, the MPAR system must achieve an aggressive cost goal, while equaling or bettering current performance metrics. The MPAR panel helps achieve the ambitious cost targets by using highly integrated microwave components and commercial manufacturing practices. Furthermore, the electronically scanning MPAR array panels can accomplish diverse surveillance tasks much more quickly, and with more flexibility than can the mission-specific rotating antenna systems in use today.
The MIT Lincoln Laboratory program is addressing key technology challenges including low cost dual polarized active phased array panels, overlapped digital subarray architecture, and accurate performance and cost models for the radars. This presentation will describe the current status of these efforts, and describe future enhancements.
Jeffrey S. Herd PhotoJeffrey S. Herd received the B.S., M.S. and Ph.D. degrees in Electrical Engineering from the University of Massachusetts, Amherst, in 1982, 1983 and 1989, respectively. From 1983–1999, he was with the Antenna Technology Branch of the Air Force Research Laboratory at Hanscom AFB, MA. From 1992-1994, he was a visiting scientist with the Antenna Group of the Institute for High Frequency Techniques, German Aerospace Research Establishment (DLR), Munich, Germany. In 1999, he joined MIT Lincoln Laboratory, Lexington, MA, where he is currently an Assistant Group Leader in the Advanced RF Sensing and Exploitation Group. MIT Lincoln Laboratory conducts research and development aimed at solutions to problems critical to national security. The Advanced RF Sensing and Exploitation Group is developing advanced RF technologies and adaptive signal processing techniques for next generation RF surveillance systems. Dr. Herd’s research interests include ultra-wideband arrays, RF pre-conditioning networks, multifunction T/R modules, digital sub-array architectures, and wideband digital receivers.
*This work was sponsored by the FAA under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are not necessarily endorsed by the United States Government.
Meeting will be held at MIT Lincoln Laboratory A-Café, 244 Wood Street, Lexington, MA. For directions please see: http://www.ll.mit.edu/about/map.html
For more information, contact Aerospace & Electronic Systems chair, Eli Brookner eli_brookner@raytheon.com or Antennas & Propagation chair, Gregory Charvat at Gregory.charvat@ll.mit.edu

Sunday, October 16, 2011

Wednesday, September 7, 2011

Next meeting: Tue 9/13, at Lincoln Laboratory


Microwave Theory and Techniques, and Antenna and Propagation Societies

5:30 PM – 7:30 PM

Tuesday, 13 September

Combining Differential/Integral Methods and Time/Frequency Domain Analysis to Solve Complex Antenna Problems

Ian Wood, Application Engineer, CST of America, Inc.

The accurate and efficient electromagnetic simulation of antenna elements poses a substantial challenge due to the wide variation present in antenna topologies and operating specifications as well as the environments they are installed in for end use. This presentation provides an overview of several of the most robust numerical techniques currently employed by commercial simulation packages, including transient, finite element and integral equation based methods. The details of each algorithm are discussed, and their relative strengths and weaknesses are compared. Several antenna examples are presented to demonstrate where each solver technology is most applicable.
Ian Wood PhotoIan Wood graduated from the University of Victoria with a MASc in Electrical Engineering. His research involved developing a compact, planar imaging array for use in radio astronomy. He worked as a student researcher at the Herzberg Institute of Astrophysics, assisting in the production of 84-116 GHz receiver cartridges for the Atacama Large Millimeter Array Telescope. He currently works for CST of America where he provides advanced antenna simulation solutions for customers in a variety of application fields.
Location: MIT Lincoln Laboratory Cafeteria (directions and parking information below)
Please join us at 5:30 PM for refreshments with our invited speaker, Ian Wood, with a talk to follow at 6:00 PM. After the meeting, all are welcome to go out for dinner at a to-be-determined location. The meeting is free and open to the public.

Directions and parking:

MIT Lincoln Laboratory is located at 244 Wood St., Lexington, MA 02420. The cafeteria is open to the public and visitor parking is available. The Laboratory is also accessible via MBTA Bus route 76.
(Thanks to the Boston Photonics Society for the following directions.)
From interstate I-95/Route 128:
From Exit 31B:
Take Exit 31B onto Routes 4/225 towards Bedford - Stay in right lane
Use Right Turning Lane (0.3 mile from exit) to access Hartwell Ave. at 1st Traffic Light.
Follow Hartwell Ave. to Wood St. (~1.3 miles).
Turn Left on to Wood Street and Drive for 0.3 of a mile.
Turn Right into MIT Lincoln Lab, at the Wood Street Gate.
From Exit 30B:
Take Exit 30B on to Route 2A - Stay in right lane.
Turn Right on to Mass. Ave (~ 0.4 miles - opposite Minuteman Tech.).
Follow Mass. Ave for ~ 0.4 miles.
Turn Left on to Wood Street and Drive for 1.0 mile.
Turn Left into MIT Lincoln Lab, at the Wood Street Gate.
To get to the Cafeteria, proceed toward the Main Entrance of Lincoln Laboratory. Before entering the building, proceed down the stairs located to the left of the Main Entrance. Turn right at the bottom of the stairs and enter the building through the Cafeteria entrance. The Cafeteria is located directly ahead.
For additional information, please contact Chris Galbraith (galbraith@ieee.org), IEEE MTT-S Boston Chapter co-chair.

Monday, August 29, 2011

Saturday, July 30, 2011

August 26, 6pm Marta Martinez-Vazquez from IMST GmbH, Germany, will present: 'Challenges in practical design of planar arrays'

We are pleased to announce that Marta Martinez-Vazquez is flying out from Germany to speak to a joint meeting of AP-S, WIE, AES, and GRSS societies of Boston.

MIT Lincoln Laboratory will be providing a sandwich service for dinner during this special meeting, so be sure to pre-register here so that we can have an accurate head-count: http://meetings.vtools.ieee.org/meeting_view/list_meeting/7707

Details as follows:

Antennas & Propagation; Aerospace & Electronic Systems; Geoscience and Remote Sensing; and Women in Engineering Societies

6:00 PM, Friday, 26 August

Challenges in practical design of planar arrays

Antennas & Propagation Distinguished Lecturer, Dr. Marta Martínez Vázquez, Department of Antennas & EM Modelling, IMST GmbH, Carl-Friedrich-Gauss-Str. 2-4, 47475 Kamp-Lintfort, Germany. martinez@imst.de

The development of new multimedia services and intelligent sensor systems is progressing at a rapid pace and requires the use of agile antenna frontends that are compact, highly efficient and cost-effective. These antennas are rarely off-the-shelf solutions. On the contrary, custom-tailored solutions are usually required in order to optimise the performance, and facilitate the integration into the final product.

In many applications, the best compromise for an antenna solution with respect to cost and performance is a planar array. In general, a planar array can be defined as an antenna in which all of the elements are situated in one plane. The antenna elements themselves can be patches or other planar or buried structures. The range of applications of planar arrays include agile RF-frontends for mobile satellite terminals, radar systems for automotive and security applications, and millimetre wave point-to-point or point-to-multipoint radio links for multimedia wireless networks.

Real-life communications systems can include antenna arrays with only a limited number of transmitters and receivers as well as very large arrays with hundreds of receive and transmit channels. A skilful symbiosis of industrial development and innovative research projects is the key to provide cost-effective products. Some typical applications will be described in the next sections.

Considerable experience is required for the design and realisation of planar antenna arrays at microwave frequencies, especially when broadband solutions are demanded. It is not only necessary to develop innovative concepts beyond the standard patch design, but it also becomes unavoidable to cope with material and manufacturing tolerances when realising the antennas on soft and hard substrates. Special care has also to be invested in the RF-feeding network and the transition between antenna and RF-circuitry, as the latter can become a bottleneck at high frequencies, hence limiting the available bandwidth.

In order to provide cutting-edge solutions, it is important not only to develop systems based on state-of-the art antenna concepts. Fast and highly accurate EM solvers are indispensable tools to simulate the whole antenna system. Access to prototyping tools and accurate measurement facilities are also required. The seamless integration of all these services helps reduce the number of iterations to obtain high-performance antennas, thus leading to reduced development time. A complete, industrial solution for complex planar arrays must cover the whole development chain, starting with the conceptual design and the development of new concepts and solutions, going through the prototyping and optimisation process, including antenna characterisation and diagnosis, up to the preparation of line production and qualification phase. Some of the key steps will be discussed in this talk.

Marta Martínez-Vázquez PhotoMarta Martínez-Vázquez was born in Santiago de Compostela, Spain, in 1973. She obtained the Dipl.-Ing. in telecommunications and Ph.D. degree from Universidad Politécnica de Valencia, Spain, in 1997 and 2003, respectively. In 1999 she obtained a fellowship from the Pedro Barrié de la Maza Foundation for postgraduate research at IMST GmbH, in Germany. Since 2000, she is a full-time staff member of the Antennas and EM Modelling department of IMST. Her research interests include the design and applications of antennas for mobile communications, planar arrays and radar sensors, as well as Electromagnetic Bandgap (EBG) materials. Dr. Martínez-Vázquez was awarded the 2004 "Premio Extraordinario de Tesis Doctoral" (Best Ph.D. award) of the Universidad Politécnica de Valencia for her dissertation on small multiband antennas for handheld terminals. She has been a member of the Executive Board of the ACE (Antennas Centre of Excellence) Network of Excellence (2004-2007) and the leader of its activity on small antennas. She is the vice-chair of the COST IC0306 Action “Antenna Sensors and Systems for Information Society Technologies”, and a member of the IEEE Antennas and Propagation Society and of the Technical Advisory Panel for the Antennas and Propagation Professional Network of IET. She is the author of over 50 papers in journals and conference proceedings. Dr. Martínez-Vázquez’s career is an example of the positive results of such coordination programs. She started as an expert participant in COST 260, became a Working Group leader in COST 284, and a member of the Executive Board of ACA, leading the “Small Antennas” activity. Presently, she is the Vice-chair of the COST IC0603 Action.

Meeting will be held at MIT Lincoln Laboratory A-Café, 244 Wood Street, Lexington, MA. For directions please see:http://www.ll.mit.edu/about/map.html

For more information, contact Antennas & Propagation chair, Gregory Charvat at Gregory.charvat@ll.mit.edu